A sharp correction theorem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Form of the Virial Theorem

In its classical form the Virial Theorem concerns the behavior of a system S of n mass particles acting under Newtonian attraction in such a fashion that the center of mass 0 remains fixed and the potential energy V satisfies V> — <*> for all positive time t. The latter condition, which is not always stated explicitly, guarantees the analyticity of the coordinates of the particles in the indepe...

متن کامل

A Sharp Form of Whitney’s Extension Theorem

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Statement of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. Order Relations Involving Multi–indices . . . . . . . ....

متن کامل

A Sharp Compactness Theorem for Genus-One Pseudo-Holomorphic Maps

For each compact almost Kahler manifold (X,ω, J) and an element A of H2(X ;Z), we describe a natural closed subspace M 0 1,k(X,A; J) of the moduli space M1,k(X,A; J) of stable J-holomorphic genus-one maps such that M 0 1,k(X,A; J) contains all stable maps with smooth domains. If (P, ω, J0) is the standard complex projective space, M 0 1,k(P , A; J0) is an irreducible component of M1,k(P, A; J0)...

متن کامل

A Sharp Form of the Cramér–wold Theorem

The Cramér–Wold theorem states that a Borel probability measure P on R is uniquely determined by its one-dimensional projections. We prove a sharp form of this result, addressing the problem of how large a subset of these projections is really needed to determine P . We also consider extensions of our results to measures on a separable Hilbert space. As an application of these ideas, we derive ...

متن کامل

Correction to a Theorem of Schoenberg

A well–known theorem of Schoenberg states that if f(z) generates a PFr sequence then 1/f(−z) generates a PFr sequence. We give two counterexamples which show that this is not true, and give a correct version of the theorem. In the infinite limit the result is sound: if f(z) generates a PF sequence then 1/f(−z) generates a PF sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1995

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-113-2-177-196